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Topology in W 1,p(M ,N )

So far, we have worked only with continuous maps. Several questions
with a topological flavor may however be addressed in Sobolev classes.
For instance

(P 1) Can one define homotopy classes in W 1,p(M ,N ) ?

We have seen also other problems:

(P 2) what about weak limits in Sobolev classes ?

(P 3) Can one define liftings in Sobolev classes ?

A central tool in all of these problemes is the approximation problem:

(P 4) Can one approximate maps in Sobolev classes by smooth
maps, or with prescribed types of singularities ?
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Homotopy classes in Sobolev spaces

Given two manifolds M and N , N embedded in R`. Recall that

W 1,p(M ,N )= {u ∈W 1,p(M ,R`), u(x) ∈N for a.e x ∈M }.

Using an approximation argument, one may show that homotopy
classes are well-defined in W 1,p(M ,N ) in the case p ≥m= dimM . As
a a matter of fact, we have:

Theorem (Schoen-Uhlenbeck)

if p ≥m, then C∞(M ,N ) is dense in W 1,p(M ,N ).
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Proof of the Schoen and Uhlenbeck theorem

The case p > dimM . By Sobolev embedding

W 1,p(M ,N ) ,→C0(M ,N )

For u ∈W 1,p(M ,N ) consider

uε =ϕε?u with ϕε(·)= 1
εm

ϕ
( ·
ε

)
standard molifier,

so that uε→ u uniformly and hence

dist(N ,uε(x))→ 0 as ε→ 0. (1)

and one obtains, for π nearest point projection onto N

C∞(M ,N ) 3Π◦uε→ u in W 1,p asε→ 0.

The limiting case p = dimM . The argument may be adapted.
Convergence (1) remains true, but with a different argument, and hence
the conclusion.
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Nearest point projection

Fabrice Bethuel Branched transportation and singularities of Sobolev maps between manifolds Part II : Sobolev spaces and topology



Homotopy classes
Infima of energies in homotopy classes

Gamma convergence
The limiting case and above

Homotopy classes for p ≥m

If p >m, maps in W 1,p(M ,N ) are continuous, so that homotopy classes
are well-defined in W 1,p(M ,N ).

In the limiting case p =m, using the previous approximation scheme one
may show that all approximating maps are in the same homotopy class,
defining hence hence homotopy classes in W 1,m(M ,N ).
Homotopy classes are conserved under weak convergence if p >m, that
means:
if unn∈N is a sequence of maps in W 1,p(M ,N ) that are all
homotopic and if

un* u weakly in W 1,p(M ,N ) =⇒ u is in the same homotopy class.

This is no longer true in the limiting case p =m, due to the
bubbling phenomenon
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Bubbling sequences

Assume that πm(N ) 6= ; and consider a map χ ∈C0
S (B

m,N ) with a non
trivial homotopy class: We extend it to Rm setting

χ(x)= S for x ∈Rm \Bm.

Next consider the scaled map χr ∈C0
S (D

2,S2) defined by

χr (x)=χ(x
r
) if |x | ≤ r and χr (x)= S otherwise.

The Dirichlet energy is scale invariant so that∫
|∇χr |m =

∫
|∇χ|m

and χr and χ are in the same homotopy However

χr * S, as r → 0,

Since constants have trivial homotopy class the homotopy class not
conserved in the weak limit. in the limiting case p =m ∈N∗.
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The case p = 2, N =S2
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bubbles for the sphere S2

In this example, let S = (0,0−1) be the South pole of S2 and consider the
set

C0
S (D

2,S2)= {u ∈C0(D2,S2),u = S on ∂D2}.

Homotopy classes in C0
S (D

2,S2) are labelled by an integer d ∈Z, the
degree of the map. For instance, let

χ(x1,x2)= (x1f (r),x2f (r),g(r)) with r =
√
x2
1 +x2

2 , r2f 2(r)+g2(r)= 1,

with f and g smooth such that{
f (0)= f (1)= 0, 0≤ rf (r)≤ 1 for any r ∈ [0,1]
−1≤ g ≤ 1 and g decreases from g(0)= 1 to g(1)=−1.

Then
degχ= 1,

whereas the constant map u = S has degree zero.
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Infima of energies in homotopy classes

Consider the p Dirichlet energy defined on W 1,p(M ,N ) by

Ep(u)=
∫
M

|∇u|pdx

A natural question is

(P 5) For p ≥m Is Ep achieved in homotopy classes?

The answer is YES if p >m. It suffices to invoke thedirect methods in
Calculus of variation

The limiting case p =m is fare more subtle in view of the bubbling
phenomena. Results are of various nature and will not be discussed here.
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estimates of infima of energies in homotopy classes

We are interested here in the value of the number, for a given homotopy
class �v�

κp(�v�)= inf
{
Ep(u),u ∈C1(M ,N )u ∈ �v�

}
of the energy among all maps with the same energy as v . We will focus
on the case :

p =m, m= 2 or m= 3
M =Sm

N =S2.
for which πm(N )=Z, so that we may study the asymptotic limit as
d →+∞.

Fabrice Bethuel Branched transportation and singularities of Sobolev maps between manifolds Part II : Sobolev spaces and topology



Homotopy classes
Infima of energies in homotopy classes

Gamma convergence
The spaghetton

Energies of maps into spheres

We set for p = 2 and p = 3

νp(d)= inf
{
Ep(w), w ∈C1(Sp ,S2) degp(w)= d

}
.

We consider the asymptotic properties as |d | grows.
Theorem
We have:

ν2(d)= 8π|d |, ∀d ∈Z
ν3(d)∝|d | 34 as |d |→+∞ (Rivière, 98’).

Notice the difference of asymptotic growth!

The first case corresponds to degree theory, whereas the second relies on
the Hopf invariant. We next provide some details on the proofs.
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Lower bounds of the energy for maps S2 →S2 through
degree theory

Let d ∈Z and consider a C1 map u :S2 →S2 such that deg(u)= d .. The
integral formula for the degree yields

4πd =
∫
S2

u.ux ×uydx dy

Invoking the inequality u.ux ×uy ≤ 1
2 (|ux |2+|uy |2), we deduce

8π|d | ≤
∫
S2

|∇u|2dx dy

which yields the lower bound

ν2(d)≥ 8π|d |.
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Upper bounds

In order to show that
ν2(d)≤ 8π|d |,

we have to construct a sequence (uε)ε>0 of maps from S2 to S2 degree
d maps such that

E2(uε)≤ 8π|d |+O(1)
ε→0

We may prove this statement processing by gluing |d | copies od degree 1
maps of energies close to 8π.
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Energy lower-bounds for maps from S3 to S2

We use the integral formula for the Hopf invariant to deduce a lower
bound for the energy.
Let d ∈Z and consider a C1 map U :S3 →S2 such that H(u)= d .. The
integral formula for the degree yields

16π2|d | =
∫
S3

d?Φ∧U?(ω
S2 ), with ∆S3Φ= U?(ω),

Since { |U?(ω
S2 )| ≤C |∇U|2 and

‖∇Φ‖L3C‖∇U‖2
L3

by elliptic estimates. We deduce by Hölder 6π2|d | ≤ ‖∇U‖4
L3 so that

E3(U)≥Cd
3
4

so that ν3(d)≥Cd
3
4 , as desired.
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Upper-bounds for ν3(d), Rivière 98’

It is more subtle and relies on the identity

H(ω◦U)= (degω)2H(U). (2)

for U :S3 →S2 and ω :S2 →S2.

Notice the quadratic behavior with respect to ω

We apply this formula with U =Π the Hopf map, a map ω` of degree `
and set {

u` =ω` ◦Π, so that

H(u`)= `2.

We will construct ω` so that E3(u`)≤C |`| 32 ≤C |H(u`)|
3
4 .
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One the construction of ω`

Given ` ∈Z, we construct a smooth map ω` :S2 →S2 such that

deg(ω`)= ` and |∇ω`|L∞(S2) ≤C
√
|`|,

The idea is to glue together |`| copies of de degree ±1 maps scaled down
to to cover disks of radii of order

√
|`|. This yields

E3(u`)≤C |`| 32 ≤C |H(u`)|
3
4 ,

yielding the estimate
νd ≤ |d | 34

hence at least when the hopf invariant d = `2 is a square.
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The spaghetton map

It corresponds to a slight modification of the previous construction, better
adapted for later purposes. It relies on the Pontryagin construction.

As already seen, a way to create maps with non trivial topology is to
consider two linked planar curves, with non twisted frames

Hopf invariant of this map Ψ%[C ,e⊥] equals 2.
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Sheaves of spaghetti

Instead of considering one single curve, we consider sheaves of `2 curves,
which are planar, parallel, essentially of the same size :

all curves are stadion shaped

the mutual distance between two curves is of order
√
`−1

they lie in parallel planes of mutual distance of order
√
`−1

the interessection with an orthogonal plane passing through the
middle od the stadions lies in a square of order 1.

Fabrice Bethuel Branched transportation and singularities of Sobolev maps between manifolds Part II : Sobolev spaces and topology



Homotopy classes
Infima of energies in homotopy classes

Gamma convergence
The spaghetton

View from above of a sheave of 9 spaghetti
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View from the side of a sheave of 9 spaghetti
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A `= 2 sheave
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A `= 3 sheave
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The k-Spaghetton map

Instead of considering one single sheave of spaghetti, we consider next
two sheaves of spaghetti:

for the same integer `
but lying in transversal direction, for instance parallel to the planes
OxY and Oxz .
the two sheaves are linked
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We choose % of order
p
`.

The Hopf invariant of the map S` ≡Ψ%[C ,e⊥], called the k spaghetton
and denoted S`, equals now 2`4.
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Energy of the Spaghetton map

By appropriate choice of the thickness of the elementary spaghettis
forming the sheaves of the spaghetton S` choosing %∝ `−1, one may
show that

|∇S`| ≤C`

and equals 0 outside a region of measure of order `−2. This yields

E3(S`)'C`3,

whereas the Hopf invariant is

H(S`)= 2`4.

This yields again νd ≤Cd
3
4 , for d = 2`2.
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A gamma-convergence type results

Given a map u ∈W 1,m
S

(Bm,N ), consider the set V (u) of all sequences
(vn)n∈N such that

vn* u weakly in W 1,m(M ,N ) and �vn� = �v�,

where v ∈W 1,m
S

(Bm,N ) is given. the first obersvation is

Lemma

The set of sequences V (u) is not empty.

The proof amounts to construct explicitly a sequence (vn)n∈N which
converges weakly to u. This can be done attaching "bubbles" to u, i. e
maps in the homotopy class of �v −u�, with radius r of order n−1 for
instance.
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Gluing bubbles

One may glue also at different points concentration of maps alpha1 such
that ∑�αi � = �u−v�.
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Optimal sequences

If one seeks for an optimal sequence from the point of view of energy,
then are led to consider the number

µ(u,v)= inf
(vn)n∈N ∈V

{
limsup
n→+∞

E (vn)

}
and

γ(u,v)= inf

{ ∑∑�αi �=�u−v�
κm(αi )

}

Theorem
We have

µ(u,v)=Em(u)+γ(u,v),

so that γ(u,v) represents the minimal the defect energy.
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As an example, if m= p = 2 and N =S2, then we have

µ(u,v)=E2(u)+8π|degu−degv |.

if m= p = 3 and N =S2, then
µ(u,v)=E3(u)+ inf∑

di=H(u)−H(v)

∑
ν3(d1)

with ν(di )∝|di |
3
4 .

\ [

We next consider an optimal sequence (wn)n∈N in V (u)such that

Em(wn) →
asn→+∞µ(u,v)=Em(u)+γ(u,v)

This sequence has the following compactness properties
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Compactness of optimal sequences

There exists a integer k ∈N, k points a1, . . .ak and homotopy classes
α1, . . . ,αk such that the following properties holds

wn → u strongly in W 1,m(K ) for any compact set K ∈Bm ∪ {ai }.

|∇wn|p →|∇u|p +
k∑
i=1

κm(αi )δai in the sense of measures

k∑
i=1

αi = �u−v�.

This type of results can be used to show that infini are attained in some
homotopy classes (Rivière, 98’, p = 3,N =S2).
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