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A Vague Problem from Algebraic Topology

For a given homology class α ∈ Hm(M) or cohomology class β ∈ Hm(M),
find a “special” representative cycle or cocycle.

One can first try to have a simple (small) theory adapted to the spaces
being considered. For example,

* For M triangulated, use simplicial theory.

* For M a smooth manifold and for real coefficients, use
differential forms and De Rham theory.

* For M semi-algebraic, use semi-algebraic chains, etc.
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Minimizers
One can also look for representatives using a variational problem.

* In Hodge theory for a Riemannian manifold, harmonic forms minimize
an energy in a De Rham class.

* Also some geodesics provide length minimizing cycles in a one
dimensional integral homology class.

This example and the obstruction (Thom) to any smooth manifold
representatives of various higher dimensional integral homology classes led
to the question of existence of mass-minimizing representing cycles.

In 1960, H. Federer and W. Fleming studied not only the (absolute)
Plateau problem of finding a mass-minimizer of general dimension with a
given boundary. They also considered the corresponding problem of
minimizing mass in a given homology class. This required the chains of
the homology theory to have a suitable notion of mass and a suitable
topology to give limits of mass-minimizing sequences. The chains should
include oriented finite volume submanifolds and should, in general have
some geometrc structure.
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Very Short History

1960 H. Federer-W. Fleming used chains with R or Z coefficients in Rn.
Here the chains are currents, i.e. linear functionals on differential forms.

1966 W. Fleming used chains with coefficients in a finite Abelian group.
Example 1. For a minimal Mobius band, A in R3 viewed as a Z/2Z chain,
∂A is a circle.

Example 2. B is three (similarly-oriented) semi-circles bounding A which is
three half-disks. Here ∂B = 0 and ∂A = B as Z/3Z chains.
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Short History Cont’d

1999 B. White treated general normed Abelian coefficient groups with
new proofs. White’s and Fleming’s chains are obtained by completing
groups of elementary chains with respect to suitable metrics.

2000 L. Ambrosio and B. Kirchheim Chains are newly defined currents in
a metric space ( which have R or Z coefficients).

2002 Jerrard, 2003 H.-DePauw, 2005 T. Adams, 2007 S. Wenger, 2007
U. Lang, 2009 Ambrosio-Wenger, 2009 Ambrosio-Katz, 2009 M. Snipes,
2010 C. Riedweg, 2011 Wenger, 2013 Rajala-Wenger, 2015
Camille-Rajala-Wenger.
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Rectifiable Chains

Theorem. (H.Federer - W.Fleming, 1960) Integer-multiplicity rectifiable
chains give the ordinary integral homology for pairs of compact Euclidean
Lipschitz neighborhood retracts (ELNR). Homology classes of such pairs
contain mass-minimizing rectifiable chains.

Remark. ELNR’s include compact smooth submanifolds and polyhedra,but
not pieces of algebraic subvarieties with cusps.

What are rectifiable chains?
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Rectifiable Sets
A subset M of a metric space X is Hm rectifiable if Hm(M \ f (E )) = 0 for
some Lebesgue measurable E ⊂ Rm and Lipschitz f : E → M.
Here Hm is m dimensional Hausdorff measure.

Parameterization Theorem. There exist disjoint compact Ai ⊂ Rm and
an injective map α : A = ∪∞i=1Ai → M such that Hm[M \ α(A)] = 0,
Lipα ≤ 1 + δ, and Lip(α � Ai )

−1 ≤ 2
√
m.
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Rectifiable G Chains

Let (G , ‖ ‖) be a complete normed Abelian group. We get a rectifiable G
chain simply by adding a density function g ∈ L1(A,G ) to our
parameterization.

We make the identification [[α,A, g ]] = [[β,B, h]] if∫
α(A)\β(B)

|g ◦ α−1| dHm = 0 =

∫
β(B)\α(A)

|h ◦ β−1| dHm

and g = [sgn detD(β−1) ◦ α]
(
h ◦ β−1 ◦ α

)
a.e. on α−1[α(A) ∩ β(B)].

Rm(X ;G ) = {m dimensional rectifiable G chains T in X}.
To take advantage of some hidden linear structure for rectifiable objects in
a metric space we will use:
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An Easy Embedding Remark

Kuratowski made the beautiful observation that

Any metric space X admits distance-preserving map into a Banach space.

In fact, for any dense subset D of X and point x0 in X , let

ι : X → `∞(D) = {bounded functions on D} ,

x ∈ X 7→ dist (·, x)− dist (·, x0) .

Thus, identifying X with ι(X ), we may now think of X itself as being a
subset of Y = `∞(D).

In particular, the standard space `∞ of bounded sequences contains an
isometric copy of any separable metric space.

This argument also gives isometric embeddings in Lipb(X ) ⊂ Cb(X ) with
the sup norm.
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Mass, Polyhedral Chains, and Lipschitz Chains

Mass M(T ) = M[[α,A, g ]] =
∫
α(A) ‖g ◦ α

−1‖ dHm.

If M(T ) <∞, the formula µT (U) = M(T U) defines a Borel measure.

Suppose Y = `∞(D) contains X as before.

A polyhedral G chain in Y is simply a finite sum P =
∑I

i=1 [[γi ,∆i , gi ]]
where γi : Rm → Y is affine, ∆i is an m simplex, and gi is constant on ∆i .

A Lipschitz chain in Y is defined similarly except that now the γi are
arbitrary Lipschitz maps into Y .

Let Pm(Y ;G ) and Lm(Y ;G ) denote the groups of m dimensional
polyhedral and Lipschitz chains. Then:
The rectifiable chains Rm(Y ,G ) is the mass completion of Lm(Y ,G ).

Polyhedral and Lipschitz chains have easily defined boundary operations,
but these are not mass continuous.

As the Koch snowflake in the plane shows, the boundary of a rectifiable
chain is not expected to be rectifiable in general. So defining it requires
completion of Lipschitz chains with respect to a weaker norm.
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Push-forward and Slicing

Suppose T ∈ Rm(X ;G ).

For an injective Lipschitz map φ from X to another metric space Y we
can use a representation T = [[α,A, g ]] to well-define the push-forward
φ#T = [[α ◦ φ,A, g ]] ∈ Rm(Y ;G ). For a general Lipschitz φ : X → Y ,
one can make a suitable partition of the domain and range as in the proof
of the parameterization theorem.

For a Lipschitz f : X → Rn with n ≤ m and a.e. y ∈ Rm, one may define
define the slice of T in f −1{y}, 〈T , f , y〉 ∈ Rm−n(X ;G ) by first treating
the case T = [[id,A, g ]] ∈ Rm(Rm;G ). Here for a.e. y ∈ Rn, one has for
Hm−n a.e. x ∈ A ∩ f −1{y} that f is differentiable at x with rank n. One
obtains a parameterization for A ∩ f −1{y} near x .
(Federer’s “Lipschitz” Sard Theorem)

For the general case, let

〈[[α,A, g ]], f , y〉 = α#〈[[id,A, g ]], f ◦ α, y〉 .
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Slicing via Sublevel Sets

In case n = 1, and M(T ) + M(∂T ) <∞, we have, for a.e. r ∈ R, the
handy boundary restriction formula

〈T , f , r〉 = ∂(T {f < r} − (∂T ) {f < r} .

Here we may, for a.e. r , replace the set {f < r} by {f ≤ r} in either or
both occurrences because the set f −1{r} has both µT and µ∂T measure
zero, except for at most countably many r .

In case n > 1, we may write f = (f1, f2, · · · , fn), and we have for a.e.
y = (y1, y2, · · · , yn) ∈ Rn the formula

〈T , f , y〉 = 〈· · · 〈T , f1, y1〉, · · · , fn, yn〉 ,

expressing the Rn slice as repeated R slices.
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Flat Norm and Flat Chains
Note that in the space R the points 1/i approach the point 0, but the
corresponding 0 dimensional chains [[1/i]] do not approach [[0]] in mass
norm because M([[1/i]]− [[0]]) = 2.

Whitney defined the flat norm, which we adapt. For a Lipschitz chain
T ∈ Lm(Y ;G ), let

F(T ) = inf{M(S) + M(T − ∂S) : S ∈ Lm+1(Y ,G )} .

Then the flat norm F([[1/i]]− [[0]]) ≤ 1/i → 0 because
[[1/i]]− [[0]] = ∂[[0, 1/i]].

Then F is a norm on Lm(Y ;G ), and we define the group of flat chains
Fm(Y ;G ) as the F completion of Lm(Y ;G ) (or of Pm(Y ;G ) [De Pauw] ).

The flat continuity of ∂ on Lipschitz chains gives a well-defined boundary
operator on the flat chains Fm(Y ;G ).
Since F ≤M, a rectifiable chain T ∈ Rm(Y ;G ) is flat and so now has a
well-defined boundary ∂T ∈ Fm−1(Y ;G ).
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Slicing Flat Chains

Using the integral mass slice estimate
∫
Rn M〈T , f , y〉dy ≤ c(Lip f )nM(T ),

which leads to a corresponding integral flat norm slice estimate, we readily
extend slicing to flat chains.

In case N(T ) ≡M(T ) + M(∂T ) <∞ and
f : X → R is Lipschitz, we again have for a.e. r ∈ R

〈T , f , r〉 = ∂(T {f < r} − (∂T ) {f < r}
= ∂(T {f ≤ r} − (∂T ) {f ≤ r} .

Note that this implies that, for a.e. −∞ < r < s < +∞,

〈T , f , s〉 − 〈T , f , r〉 = ∂(T f −1[r , s])− (∂T ) f −1[r , s] ,

which give the flat norm estimate

F(〈T , f , s〉 − 〈T , f , r〉) ≤M(T f −1[r , s]) + M((∂T ) f −1[r , s] ) .
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A Total Variation Estimate for the Slice
For a.e. finite sequence −∞ < r0 < r1 < · · · < rI <∞, we deduce

I∑
i=1

F(〈T , f , ri+1〉 − 〈T , f , ri 〉) ≤ cN(T ) .

Taking the supremum over such ri gives bound on the flat essential
variation of 〈T , f , ·〉. Finally, for a Lipschitz f : X → Rn, we recall how the
total variation of a function of n variables is estimated by integrals of the
essential variation of restrictions to a.e. coordinate line. We conclude:

For any T ∈ Fm(X ) with N(T ) = M(T ) +M(∂T ) <∞, the slice function

〈T , f , ·〉 ∈ MBV (Rm,F0(X ;G ))

with total variation bounded by CN(T ).
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Lower Semicontinuity ?

Theorem. If Ti ,T ∈ L0(X ;G ) and F(Ti − T )→ 0, then

M(T ) ≤ lim inf
i→∞

M(Ti ) .

This lower semicontinuity is true for m = 0, 1, and 2 [Burago,Ivanov] but
unknown for m chains, with m ≥ 3, even in finite dimensional Banach
spaces.

Fortunately,

Theorem. There is an F lower semicontinuous norm M̂ on Lm(X ;G ) with
m−mM̂ ≤ M ≤ M̂ .

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 18 / 29



Lower Semicontinuity ?

Theorem. If Ti ,T ∈ L0(X ;G ) and F(Ti − T )→ 0, then

M(T ) ≤ lim inf
i→∞

M(Ti ) .

This lower semicontinuity is true for m = 0, 1, and 2 [Burago,Ivanov] but
unknown for m chains, with m ≥ 3, even in finite dimensional Banach
spaces.

Fortunately,

Theorem. There is an F lower semicontinuous norm M̂ on Lm(X ;G ) with
m−mM̂ ≤ M ≤ M̂ .

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 18 / 29



Lower Semicontinuity ?

Theorem. If Ti ,T ∈ L0(X ;G ) and F(Ti − T )→ 0, then

M(T ) ≤ lim inf
i→∞

M(Ti ) .

This lower semicontinuity is true for m = 0, 1, and 2 [Burago,Ivanov] but
unknown for m chains, with m ≥ 3, even in finite dimensional Banach
spaces.

Fortunately,

Theorem. There is an F lower semicontinuous norm M̂ on Lm(X ;G ) with
m−mM̂ ≤ M ≤ M̂ .

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 18 / 29



Definition of M̂

In case X = RN and (G , ‖ ‖) = (R, | |), any T ∈ Rm(X ;G ) defines a
rectifiable current, any smooth f : RN → Rm gives the simple m form
df1 ∧ · · · ∧ dfm, and we have the formula

M(T df ) =

∫
Rm

M〈T , f , y〉 dy .

Since general G -chains do not admit a useful “dual” space, the left does
not generalize. But the right does. For open U ⊂ X and Lipschitz
f : X → Rm we may use the Borel measure

µU,f (A) =

∫
Rm

M[〈T , f , y〉 (U ∩ A)] dy for Borel A .

We get the “supremum” measure

µ̂(A) = sup

{
I∑

i=1

µUi ,f (A) : Ui are disjoint open in X , f ∈ Lip1(X ,Rm)

}
.
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More on M̂

Let M̂(T ) = µ̂(X ).

The proof of the universal comparability of M̂ with M
is based on

John’s Lemma For any m dimensional normed vectorspace (V , ‖ ‖) there
is a linear map L : (V , ‖ ‖)→ (Rm, | |) such that Lip L ≤ 1 and
Lip L ≤

√
m.

Remark. M(T ) = M̂(T ) if m = 0, m = 1, or X isometrically embeds in a
Hilbert space.

Finally defining, for T ∈ Fm(X ;G ),

M̂(T ) = lim inf
δ↓0
{M̂(L) : L ∈ Lm(X ;G ), F(L− T ) < δ} ,

we get lower semicontinuity of M̂ on Fm(X ;G ).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 20 / 29



More on M̂

Let M̂(T ) = µ̂(X ). The proof of the universal comparability of M̂ with M
is based on

John’s Lemma For any m dimensional normed vectorspace (V , ‖ ‖) there
is a linear map L : (V , ‖ ‖)→ (Rm, | |) such that Lip L ≤ 1 and
Lip L ≤

√
m.

Remark. M(T ) = M̂(T ) if m = 0, m = 1, or X isometrically embeds in a
Hilbert space.

Finally defining, for T ∈ Fm(X ;G ),

M̂(T ) = lim inf
δ↓0
{M̂(L) : L ∈ Lm(X ;G ), F(L− T ) < δ} ,

we get lower semicontinuity of M̂ on Fm(X ;G ).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 20 / 29



More on M̂

Let M̂(T ) = µ̂(X ). The proof of the universal comparability of M̂ with M
is based on

John’s Lemma For any m dimensional normed vectorspace (V , ‖ ‖) there
is a linear map L : (V , ‖ ‖)→ (Rm, | |) such that Lip L ≤ 1 and
Lip L ≤

√
m.

Remark. M(T ) = M̂(T ) if m = 0, m = 1, or X isometrically embeds in a
Hilbert space.

Finally defining, for T ∈ Fm(X ;G ),

M̂(T ) = lim inf
δ↓0
{M̂(L) : L ∈ Lm(X ;G ), F(L− T ) < δ} ,

we get lower semicontinuity of M̂ on Fm(X ;G ).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 20 / 29



More on M̂

Let M̂(T ) = µ̂(X ). The proof of the universal comparability of M̂ with M
is based on

John’s Lemma For any m dimensional normed vectorspace (V , ‖ ‖) there
is a linear map L : (V , ‖ ‖)→ (Rm, | |) such that Lip L ≤ 1 and
Lip L ≤

√
m.

Remark. M(T ) = M̂(T ) if m = 0, m = 1, or X isometrically embeds in a
Hilbert space.

Finally defining, for T ∈ Fm(X ;G ),

M̂(T ) = lim inf
δ↓0
{M̂(L) : L ∈ Lm(X ;G ), F(L− T ) < δ} ,

we get lower semicontinuity of M̂ on Fm(X ;G ).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 20 / 29



Compactness and RectifiabilityTheorems

Compactness Theorem. [DHP] Suppose X is a compact metric space
and G is a complete normed group with closed balls being compact. For
R > 0,

KR = {T ∈ Fm(X ;G ) : M̂(T ) + M̂(∂T ) ≤ R} is F compact.

Rectifiability Theorem. [DH] Any flat chain T of finite mass is
rectifiable in case the group G contains no nonconstant Lipschitz curve*.

*, discovered by B. White, is true for G = Z or Z/jZ but not (R, | |).

The rectifiability conclusion here gives the desired geometric character to
the Plateau problem solutions. While this rectifiabiity is not true for
G = R with the usual absolute value norm | |, it is true for each group
norm | |α for 0 ≤ α < 1.
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Plateau Problems

Corollary. With X and G as in (A) and T0 ∈ Fm(X ;G ) with M̂(T0) <∞,

A = {T ∈ Fm(X ;G ) : ∂T = ∂T0}

contains an M̂ minimizer.

If moreover T0 ∈ Rm(X ;G ) and G contains no
nonconstant Lipschitz curve, then {T ∈ Rm(X ;G ) : ∂T = ∂T0} also
contains an M̂ minimizer.

Proof. Since ∂(T − T0) = 0, the compactness theorem (A) implies that a
minimizing sequence in A contains a subsequence Ti = (Ti − T0) + T0

that is F convergent to T∞. Then T∞ ∈ A because
∂T∞ = limi→∞ ∂Ti = ∂T0. Also

M̂(T∞) ≤ lim inf
i→∞

M̂(Ti ) = inf
T∈A

M̂(T ) .

The second conclusion is similar.
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Shared Transport Paths (mail, biology, economics, etc.)

We may connect two probability measures µ, ν in Rn by choosing
T ∈ F1(Rn,G ) with ∂T = µ− ν.

For 0 < α < 1, we define the norm ‖r‖α = |r |α for r ∈ R. Then
(R, ‖ · ‖α) does satisfy condition * . Also “merging” paths in T may
reduce the corresponding mass Mα(T ).

Example.

M 1
2
(T ) = 1 · (6 + 6) > 1 · 4

√
2 +
√

2 · 4 = M 1
2
(S).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 23 / 29



Shared Transport Paths (mail, biology, economics, etc.)
We may connect two probability measures µ, ν in Rn by choosing
T ∈ F1(Rn,G ) with ∂T = µ− ν.

For 0 < α < 1, we define the norm ‖r‖α = |r |α for r ∈ R. Then
(R, ‖ · ‖α) does satisfy condition * . Also “merging” paths in T may
reduce the corresponding mass Mα(T ).

Example.

M 1
2
(T ) = 1 · (6 + 6) > 1 · 4

√
2 +
√

2 · 4 = M 1
2
(S).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 23 / 29



Shared Transport Paths (mail, biology, economics, etc.)
We may connect two probability measures µ, ν in Rn by choosing
T ∈ F1(Rn,G ) with ∂T = µ− ν.

For 0 < α < 1, we define the norm ‖r‖α = |r |α for r ∈ R. Then
(R, ‖ · ‖α) does satisfy condition * . Also “merging” paths in T may
reduce the corresponding mass Mα(T ).

Example.

M 1
2
(T ) = 1 · (6 + 6) > 1 · 4

√
2 +
√

2 · 4 = M 1
2
(S).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 23 / 29



Shared Transport Paths (mail, biology, economics, etc.)
We may connect two probability measures µ, ν in Rn by choosing
T ∈ F1(Rn,G ) with ∂T = µ− ν.

For 0 < α < 1, we define the norm ‖r‖α = |r |α for r ∈ R. Then
(R, ‖ · ‖α) does satisfy condition * . Also “merging” paths in T may
reduce the corresponding mass Mα(T ).

Example.

M 1
2
(T ) = 1 · (6 + 6) > 1 · 4

√
2 +
√

2 · 4 = M 1
2
(S).

Robert Hardt (Rice University) (Lyon Winter School, “Nonlinear function spaces in mathematics and physical sciences”)Spaces of Flat and Normal Chains and Cochains Dec.14-18, 2015 23 / 29



Mα Minimizers
Corollary.(Q. Xia,2003) There exists a Mα minimizing T ∈ R1(Rn,R)
with ∂T = µ− ν.

Regularity Theorem.(Q. Xia,2004) sptT \ (sptµ∪ spt ν) is locally a
polygon.

Higher Dimensions.(H.–De Pauw, In progress) For m ≥ 1 and α < 1,
dim (spt T\spt ∂T ) ≤ m − 1 for any Mα minimizing T ∈ Rm(X ,R).

Key here is that, in contrast to the α = 1 case of Almgren, one has

Graphical Approximation Lemma Near a point having a single
multiplicity Q tangent plane, the minimizer is close in measure and mass
to a Q multiple of a single-valued Lipschitz function
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